40.4k views
13 votes
Consider a triangle...

Consider a triangle...-example-1
Consider a triangle...-example-1
Consider a triangle...-example-2
User Loreb
by
3.3k points

1 Answer

8 votes

Answer:

1. Triangle: B = 47.0° , C = 103.05° , c = 2.53 cm

2. Lake: c = 1105.31 ft

Explanation:

Law of Sine Formula:
(sin(A))/(A) = (sin(B))/(B) = (sin(C))/(C)

Given: A = 30° , a = 1.3 cm , b = 1.9 cm


(sin(30))/(1.3) = (sin(B))/(1.9) = (sin(C))/(C)

Solving for sin(B). Cross Multiply.


(sin(30))/(1.3) = (sin(B))/(1.9)\\1.3*sin(B)=1.9*sin(30)\\sin(B)=(1.9*sin(30))/(1.3) \\

B = sin^-1(
(1.9*sin(30))/(1.3) )

B ≈ 46.9509202

B = 47.0°

Solve for C°

A° + B° + C° = 180°

30° + 46.95° + C° = 180°

C° = 180° - 30° - 46.95°

C° = 103.05°

Solve for sin(C)


(sin(30))/(1.3) = (sin(103.05))/(C)\\

Cross Multiply


C*sin(30)=1.3*sin(103.05)\\C=(1.3*sin(103.05))/(sin(30))

C ≈ 2.532850806

C = 2.53 cm

Law of Cosine Formula:
c^2=a^2+b^2-2*a*b*cos(C)

Given: a = 850 ft , b = 960 ft , C=75°

Solve for c.


c^2=a^2+b^2-2*a*b*cos(C)\\c^2=(850ft)^2+(960ft)^2-2*(850ft)*(960ft)*cos(75)\\\\c=√((850ft)^2+(960ft)^2-2*(850ft)*(960ft)*cos(75)\\) \\

c ≈ 1105.308698

c = 1105.31 ft

User Paul Bele
by
3.6k points