Answer:
![y = 4(x^(2) + 8x + 15) = 4x^(2) + 32x + 60](https://img.qammunity.org/2021/formulas/mathematics/college/hdx2spfw8rd71x00kqbb1d9pseuby3xfhu.png)
Explanation:
A parabola has the following format:
![y = f(x) = ax^(2) + bx + c](https://img.qammunity.org/2021/formulas/mathematics/college/57vpbvo3ao659y6s6lc38xrpatzd193462.png)
If a is positive, it's minium value is:
![y_(M) = -(\bigtriangleup)/(4a)](https://img.qammunity.org/2021/formulas/mathematics/college/ambma7m04j9y5reo8qblo8ittrho086pkf.png)
In which
![\bigtriangleup = b^(2) - 4ac](https://img.qammunity.org/2021/formulas/mathematics/college/zirtrp8pc9sd5ixxvxuq5wacoopj7h2hyk.png)
Factoring:
, in which
are the intercepts.
In this question:
![x_(1) = -5, x_(2) = -3](https://img.qammunity.org/2021/formulas/mathematics/college/fc6hc4xidi2x6f4ay0bgyhpma821q3plp8.png)
So
![a(x - x_(1))*(x - x_(2)) = a*(x - (-5))*(x - (-3)) = a*(x+5)*(x+3) = a*(x^(2) + 8x + 15)](https://img.qammunity.org/2021/formulas/mathematics/college/1fzy2ukeviphrqdgx3dbdyk5hb1z7et3sq.png)
Suppose a = 1, we have:
![x^(2) + 8x + 15](https://img.qammunity.org/2021/formulas/mathematics/college/74tczaf5gdkvh8f26p6rdzsf6t6lv6powr.png)
![\bigtriangleup = 8^(2) - 4*1*15 = 4](https://img.qammunity.org/2021/formulas/mathematics/college/t4ij6z1arxwldym5suwthm3oruit4nd6i2.png)
The minimum value will be:
![y_(M) = -(4)/(4) = -1](https://img.qammunity.org/2021/formulas/mathematics/college/6b3xzxwjwubiiyurjdjth8f65n049h2y8e.png)
We want this minimum value to be -4, which is 4 times the current minimum value, so we need to multiply a by 4. Then
![a = 4](https://img.qammunity.org/2021/formulas/mathematics/middle-school/j2u0rku3ivo0on7mfxtzaklic726y2g0p3.png)
And the parabola is:
![y = 4(x^(2) + 8x + 15) = 4x^(2) + 32x + 60](https://img.qammunity.org/2021/formulas/mathematics/college/hdx2spfw8rd71x00kqbb1d9pseuby3xfhu.png)