Answer:
![A(t)=16(0.99948)^t](https://img.qammunity.org/2021/formulas/mathematics/college/zjbkc6fhyalc34e24nouuu3mvm5zx0zywa.png)
Explanation:
The exponential function is modeled using the equation:
![A(t)=A_o(1\pm r)^t](https://img.qammunity.org/2021/formulas/mathematics/college/1toyflv96pb833pyw23wmbah7nqmi16u1o.png)
Where the plus sign indicates growth and the negative sign indicates exponential decay.
- r=Decay/Growth constant
- t=time
is the starting value.
For an exponential function has a starting value of 16 and a decay rate of 0.52%.
![A_0=16\\r=0.052\%=0.00052](https://img.qammunity.org/2021/formulas/mathematics/college/ofie4x3dbbisgpzpn83sts17ai5zfymq0m.png)
This gives:
![A(t)=16(1- 0.00052)^t\\A(t)=16(0.99948)^t](https://img.qammunity.org/2021/formulas/mathematics/college/7zvmk1nqdlxnsvw4m926ic7xdzoezaaveb.png)
The function that models this situation is:
![A(t)=16(0.99948)^t](https://img.qammunity.org/2021/formulas/mathematics/college/zjbkc6fhyalc34e24nouuu3mvm5zx0zywa.png)