230k views
2 votes
How to write 5(2x+1)(x+1) in standard form explain....?

User Cyberspy
by
8.3k points

2 Answers

3 votes

1.So the problem "y=2x+5" is in standard form and no modification is necessary. For a parabolic equation, the standard form is y = a(x - h)^2 + k, from which direction (polarity of "a") and axis of symmetry (value of "h"), etc.

2.Ax + By + C = 0 or Ax + By = C.

User Evanna
by
7.4k points
0 votes

Answer:


=10x^2+15x+5

Explanation:


5\left(2x+1\right)\left(x+1\right)\\\mathrm{Expand}\:\left(2x+1\right)\left(x+1\right):\quad 2x^2+3x+1\\\mathrm{Apply\:FOIL\:method}:\quad \left(a+b\right)\left(c+d\right)=ac+ad+bc+bd\\a=2x,\:b=1,\:c=x,\:d=1\\=2xx+2x\cdot \:1+1\cdot \:x+1\cdot \:\\=2xx+2\cdot \:1\cdot \:x+1\cdot \:x+1\cdot \:1\\\mathrm{Simplify}\:2xx+2\cdot \:1\cdot \:x+1\cdot \:x+1\cdot \:1:\quad 2x^2+3x+1\\2xx+2\cdot \:1\cdot \:x+1\cdot \:x+1\cdot \:1\\2xx=2x^2\\2\cdot \:1\cdot \:x=2x\\1\cdot \:x=x\\1\cdot \:1=1\\=2x^2+2x+x+1


\mathrm{Add\:similar\:elements:}\:2x+x=3x\\=2x^2+3x+1\\=5\left(2x^2+3x+1\right)\\\mathrm{Expand}\:5\left(2x^2+3x+1\right):\quad 10x^2+15x+5\\5\left(2x^2+3x+1\right)\\\mathrm{Distribute\:parentheses}\\=5\cdot \:2x^2+5\cdot \:3x+5\cdot \:1\\\mathrm{Simplify}\:5\cdot \:2x^2+5\cdot \:3x+5\cdot \:1:\quad 10x^2+15x+5\\5\cdot \:2x^2+5\cdot \:3x+5\cdot \:1\\\mathrm{Multiply\:the\:numbers:}\:5\cdot \:2=10\\=10x^2+5\cdot \:3x+5\cdot \:1\\\mathrm{Multiply\:the\:numbers:}\:5\cdot \:3=15


=10x^2+15x+5\cdot \:1\\\mathrm{Multiply\:the\:numbers:}\:5\cdot \:1=5\\=10x^2+15x+5\\

User Eric Yin
by
8.6k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories