191k views
5 votes
Sean b= 5,79; c= 10,4,el angulo A= 54,46°, el angulo C mide ?

User Zanchey
by
4.7k points

1 Answer

6 votes

Answer:


C \approx 91.732^(\circ)

Explanation:

(This exercise is presented in Spanish and for that reason explanation will be held in such language)

El lado restante se determina por la Ley del Coseno:


a = \sqrt{b^(2)+c^(2)-2\cdot b\cdot c \cdot \cos A}


a = \sqrt{5.79^(2)+10.4^(2)-2\cdot (5.79)\cdot (10.4)\cdot \cos 54.46^(\circ)}


a \approx 8.466

Finalmente, el angulo C se halla por medio de la misma ley:


\cos C = - (c^(2)-a^(2)-b^(2))/(2\cdot a \cdot b)


\cos C = -(10.4^(2)-8.466^(2)-5.79^(2))/(2\cdot (8.466)\cdot (5.79))


\cos C = -0.030


C \approx 91.732^(\circ)

User Bill Dudney
by
5.8k points