Answer:
a) 60.4%; 18.42 kg/s
b) 37.8% ; 35.4 kg/s
Step-by-step explanation:
a) at an isentropic efficiency of 100%.
Let's first find the exit temperature of the compressor T2, using the formula:
![(r_p) ^k^-^1^/^k = (T_2)/(T_1)](https://img.qammunity.org/2021/formulas/engineering/college/cymbs3565ludbkqcue3lhvcubfe1inrt1s.png)
Solving for T2, we have:
![T_2 = 300 * (8)^1^.^6^6^7^-^1^/^1^.^6^6^7 = 689.3 K](https://img.qammunity.org/2021/formulas/engineering/college/f93hkmk19xaxpmrzuja7876xn9djq984t0.png)
Let's now find the work dine by the compressor.
![(W_c)/(m) = c_p(T_2 - T_1)](https://img.qammunity.org/2021/formulas/engineering/college/lxdzy8vo3xjw0sb6opn7od5eiy0budmosg.png)
![(W_c)/(m) = 5.19(689.3 - 300) = 2020.4 KJ/kg](https://img.qammunity.org/2021/formulas/engineering/college/z6fs0n9bl8lyco0gx94q1cigf71s98yg6f.png)
The actual work done by the compressor =
![W_c = 1 * 2020.4 = 2020.4 KJ/kg](https://img.qammunity.org/2021/formulas/engineering/college/rlsysw3b6abylvn2a6kz0h2uval9bwofgn.png)
Let's find the temperature at the exit of the turbine, T4
![(r_p) ^k^-^1^/^k = (T_3)/(T_4)](https://img.qammunity.org/2021/formulas/engineering/college/xs4dyuf06d3umlq1z03hn2tg2pz6w3h58g.png)
Solving for T4, we have:
Let's find the work done by the turbine.
![(W_t)/(m) = c_p(T_3 - T_4)](https://img.qammunity.org/2021/formulas/engineering/college/hv4pk8f0zsljd86z5fyqln1qeo7c3rznvs.png)
![(W_t)/(m) = 5.19(1800 - 783.3) = 5276.6 KJ/kg](https://img.qammunity.org/2021/formulas/engineering/college/7pkamrd39zv9z6yckl3w23h87jobrx5wkf.png)
The actual work done by the turbine:
= 1 * 5276.6 = 5276.6 KJ/kg
Let's find the regeneration temperature, using the formula:
![e = (T_r - T_2)/(T_4 - T_2)](https://img.qammunity.org/2021/formulas/engineering/college/6xgwziican2ksa2lh6o8pe84hkyzz2fvxf.png)
Substituting figures, we have:
![0.75 = (T_r - 689.3)/(783.3 - 689.3)](https://img.qammunity.org/2021/formulas/engineering/college/rvzs73xuli37euu0fsmvl029b9zs6ssnd9.png)
![T_r = [0.75(783.3 - 689.3)] + 689.3 = 759.8](https://img.qammunity.org/2021/formulas/engineering/college/sujo30b4ysv7mmsv2i9gwzy3hk9la2u352.png)
Let's calculate the heat supplied.
![Q = c_p(T_3 - T_r)](https://img.qammunity.org/2021/formulas/engineering/college/k24h9fdps5v8211kncoobujmcegmqww1y4.png)
![Q = 5.19(1800 - 759.8)](https://img.qammunity.org/2021/formulas/engineering/college/b3tl3ckx5mg7xl3rz9bu1304u3gpcqw24q.png)
Q = 5388.2 kJ/kg
For thermal efficiency, we have:
Substituting figures, we have:
0.604 * 100 = 60.4%
For mass flow rate:
Let's use the formula:
Wnet = 60MW = 60*1000
b) at an isentropic efficiency of 80%.
Let's now find the work done by the compressor.
![(W_c)/(m) = c_p(T_2 - T_1)](https://img.qammunity.org/2021/formulas/engineering/college/lxdzy8vo3xjw0sb6opn7od5eiy0budmosg.png)
![(W_c)/(m) = 5.19(689.3 - 300) = 2020.4 KJ/kg](https://img.qammunity.org/2021/formulas/engineering/college/z6fs0n9bl8lyco0gx94q1cigf71s98yg6f.png)
The actual work done by the compressor =
![W_c = (2020.4)/(0.8)= 2525.5 KJ/kg](https://img.qammunity.org/2021/formulas/engineering/college/kbhvbuqeiene9qv1icfwzjd8bsyfjw4xst.png)
Let's find the work done by the turbine.
![(W_t)/(m) = c_p(T_3 - T_4)](https://img.qammunity.org/2021/formulas/engineering/college/hv4pk8f0zsljd86z5fyqln1qeo7c3rznvs.png)
![(W_t)/(m) = 5.19(1800 - 787.5) = 5276.6 KJ/kg](https://img.qammunity.org/2021/formulas/engineering/college/z2qcd807pbw10jlpkc81ahvaat99jkefv4.png)
The actual work done by the turbine:
= 0.8 * 5276.6 = 4221.2 KJ/kg
Let's find the exit temperature of the compressor T2, using the formula:
![(W_c)/(m) = c_p(T_2 - T_1)](https://img.qammunity.org/2021/formulas/engineering/college/lxdzy8vo3xjw0sb6opn7od5eiy0budmosg.png)
![2525.5 = 5.19(T_2 - 300)](https://img.qammunity.org/2021/formulas/engineering/college/97kd4m6ph71piz6nu55ogoa8jh4kmzryv4.png)
Solving for T2, we have:
![T_2 = (2525.5 + 300)/(5.19) = 787.5](https://img.qammunity.org/2021/formulas/engineering/college/tiphn88col2q1o922kaxmj189pz0alepcz.png)
Let's find the temperature at the exit of the turbine, T4
![(W_t)/(m) = c_p(T_3 - T_4)](https://img.qammunity.org/2021/formulas/engineering/college/hv4pk8f0zsljd86z5fyqln1qeo7c3rznvs.png)
![4221.2 = 5.19(1800 - T_4)](https://img.qammunity.org/2021/formulas/engineering/college/qrtmpmu6l9dg74vt8mop03klfucdoc2jha.png)
Solving for T4 we have:
Let's find the regeneration temperature, using the formula:
![e = (T_r - T_2)/(T_4 - T_2)](https://img.qammunity.org/2021/formulas/engineering/college/6xgwziican2ksa2lh6o8pe84hkyzz2fvxf.png)
Substituting figures, we have:
![0.75 = (T_r - 787.5)/(985 - 787.5)](https://img.qammunity.org/2021/formulas/engineering/college/jr6bvt3y9momodf4ytlp6beao6wlq4ji64.png)
![T_r = [0.75(958 - 787.5)] + 787.5 = 935.5 K](https://img.qammunity.org/2021/formulas/engineering/college/ltd4h1bwbpvt0xffsfzvhsfzgwzyyq7rac.png)
Let's calculate the heat supplied.
![Q = c_p(T_3 - T_r)](https://img.qammunity.org/2021/formulas/engineering/college/k24h9fdps5v8211kncoobujmcegmqww1y4.png)
![Q = 5.19(1800 - 935.5)](https://img.qammunity.org/2021/formulas/engineering/college/wnd5wu54jzgq37y6crsozzepufjc9iwm60.png)
Q = 4486.2 kJ/kg
For thermal efficiency, we have:
Substituting figures, we have:
0.378 * 100 = 37.8%
For mass flow rate:
Let's use the formula:
Wnet = 60MW = 60*1000