204k views
4 votes
O rază de lumină cade sub un unghi de incidență i=30⁰ pe o suprafață

plană ce separă două materiale transparente cu indici de refracție n 1 = 1,60

și n 2 = 1,40.

Calculați unghiul de refracție (din mediul cu indicele de refracție mai mic).

Sugestie: sin 30⁰ = ½.

User Saber
by
5.2k points

1 Answer

7 votes

Answer:

Step-by-step explanation:

The question in english is:

A ray of light falls under an angle of incidence of 30 degrees on a flat surface that separates two transparent materials with indexes of refractions 1.60 and 1.40, respectively.

Calculate the angle of refraction (from the environment with the lower index of refraction)

Solution

According to Snell's Law :


n_(1)sin(\theta_(1))=n_(2)sin(\theta_(2))

Where:


n_(1)=1.6 is the first medium index of refraction


n_(2)=1.4 is the second medium index of refraction


\theta_(1)=30\° is the angle of the incident ray


\theta_(2) is the angle of the refracted ray

We need to find
\theta_(2) from the equation above,


\theta_(2)=sin^(-1)((n_(1))/(n_(2))sin\theta_(1) )


\theta_(2)=sin^(-1)((1.6)/(1.4)sin(30\°)


\theta_(2)=34.84\°

Therefore, the angle of refraction is 34.84°

User Thalish Sajeed
by
5.5k points