Answer:
a)The 80% of confidence interval for the Population 'μ' is
(29.9121 ,33.4879)
b) Margin of error of mean ' 'μ' is = 1.7879
Explanation:
step(i):-
Given random sample 'n' =28
The mean of the sample x⁻ =31.7 min
The standard deviation of the sample's' =7.2
Step(ii):-
80% of confidence intervals:
The 80% of confidence interval for the Population 'μ' is determined by
![(x^(-) - t_{(\alpha )/(2) } (s)/(√(n) ) , x^(-) + t_{(\alpha )/(2) } (s)/(√(n) ) )](https://img.qammunity.org/2021/formulas/mathematics/college/ob8kiqf4vsvmyvkoydxvky4wkxuttbwd36.png)
Degrees of freedom
γ = n-1 = 28-1 =27
![t_{(\alpha )/(2) } = t_{(0.20)/(2) } = t_(0.1) = 1.314](https://img.qammunity.org/2021/formulas/mathematics/college/oaztjgn4d2rxj2jti2huat6lxgswiof0ir.png)
The 80% of confidence interval for the Population 'μ' is determined by
![(x^(-) - t_{(\alpha )/(2) } (s)/(√(n) ) , x^(-) + t_{(\alpha )/(2) } (s)/(√(n) ) )](https://img.qammunity.org/2021/formulas/mathematics/college/ob8kiqf4vsvmyvkoydxvky4wkxuttbwd36.png)
![(31.7-1.314 X (7.2)/(√(28) ) , 31.7+1.314 X(7.2)/(√(28) ) )](https://img.qammunity.org/2021/formulas/mathematics/college/9hxupa5bcitg50rynkifarbu8chwz38tmj.png)
(31.7 -1.7879 , 31.7 +1.7879)
(29.9121 ,33.4879)
b)
Margin of error of mean is determined by
![M.E = {\frac{t_{(\alpha )/(2) } s}{√(n) } }](https://img.qammunity.org/2021/formulas/mathematics/college/25aiexd8a58cti8yxhprbbm2fglc94d24g.png)
![M.E = {(1.314 X 7.2)/(√(28) ) }](https://img.qammunity.org/2021/formulas/mathematics/college/ssojzn7t61wbhy5vtbvp1tvde0vapx69ah.png)
Margin of error =1.7879