Answer:
The maximum height of the cannonball 'h' = 256
The time will take for the cannonball to reach the ground 't' =4
Step-by-step explanation:
Step-by-step explanation:-
The given equation h(t) = -16 t² + 128 t ...(i)
Differentiating equation(i) with respective to 't' we get
![h^(l) (t) = (dh)/(dt) = -16 (2 t) +128 (1)](https://img.qammunity.org/2021/formulas/mathematics/high-school/ikc3aq5wugelmxlaa6g7ri1p1cs62q2a6y.png)
![h^(l) (t) = -16 (2 t) +128 (1) = 0](https://img.qammunity.org/2021/formulas/mathematics/high-school/smn7u5sbb32gmpiv3czq05l265h87uqmff.png)
![-32 t +128 = 0](https://img.qammunity.org/2021/formulas/mathematics/high-school/o2zv67bozkizm4cv5wohpksa0of8tdm9fb.png)
- 32 t = -128
t = 4
Now
Again differentiating with respective to 'x'
![h^(ll) (t) = (d^(2) h)/(dt^(2) ) = -16 (2 ) < 0](https://img.qammunity.org/2021/formulas/mathematics/high-school/wrnd9ekgk5azca5p8oub347sedo6rtazra.png)
The function is Maximum at t = 4
The maximum value
h(t) =-16 t² + 128 t
h(4) = - 16 (4)² + 128(4) = 256
Conclusion:-
The maximum height of the cannonball 'h' = 256
The time will take for the cannonball to reach the ground 't' =4