Answer:
The probability is
![P(X\leq 10)=0.093031581](https://img.qammunity.org/2021/formulas/mathematics/college/bejqq402f5845swoztx9giaihvx14zvfny.png)
Explanation:
We know that the ratio of grey color morph to red color morph is
![53:47](https://img.qammunity.org/2021/formulas/mathematics/college/jyjxq4nwvkwdh00nedg3p76utz7ayjadqk.png)
This can be written in terms of probability as :
![P(RedColorMorph)=(47)/(100)=0.47](https://img.qammunity.org/2021/formulas/mathematics/college/dycd9gnmb4puqxm92i0n42n76wwcy801o7.png)
This means that the probability of obtain a red color morph snake in a random sample of 100 snakes is
(If I only randomly select one snake).
Now, the number
of red color morph snakes in a random sample ''n'' can be modeled as a binomial random variable. Where ''p'' is the success probability (In our case, the probability from obtain one red color morph snake out of 100 snakes) ⇒
''Number of red color morph snakes in the sample''
![p=0.47](https://img.qammunity.org/2021/formulas/mathematics/college/5wy4huou5v156dc46l5sorpwxcysukqi2t.png)
In our case,
![n=30](https://img.qammunity.org/2021/formulas/business/college/iobr7344v6njdivoferqmh8fp0oo253lk3.png)
⇒
~ Bi (n,p) ⇒
~ Bi (30,0.47)
The probability function for
is :
Where
is the combinatorial number define as
⇒
![P(X=x)=(30Cx).(0.47)^(x).(0.53)^(30-x)](https://img.qammunity.org/2021/formulas/mathematics/college/vfznl6wh8uyg3pv9mu1chn9jb4ptj51vag.png)
We need to calculate the probability of
![P(X\leq 10)](https://img.qammunity.org/2021/formulas/mathematics/college/2g43bpgnp0zmzjx8hy64nu7llsh2mndzik.png)
This probability is equal to :
![P(X\leq 10)=P(X=0)+P(X=1)+P(X=2)+P(X=3)+P(X=4)+P(X=5)+P(X=6)+P(X=7)+P(X=8)+P(X=9)+P(X=10)](https://img.qammunity.org/2021/formulas/mathematics/college/2q31sw678yye7gtztzdncxq8g6lymiwvxe.png)
For example,
![P(X=6)=(30C6).(0.47)^(6).(0.53)^(24)=0.0015446](https://img.qammunity.org/2021/formulas/mathematics/college/vyojlay6bwks0c6mdlsxfbtd60ajqrl2t1.png)
We need to calculate all the terms of the sum and then calculate
![P(X\leq 10)](https://img.qammunity.org/2021/formulas/mathematics/college/2g43bpgnp0zmzjx8hy64nu7llsh2mndzik.png)
If we use any statistical program we will find that
![P(X\leq 10)=0.093031581](https://img.qammunity.org/2021/formulas/mathematics/college/bejqq402f5845swoztx9giaihvx14zvfny.png)