Step-by-step explanation:
The orbital radius of the Earth is
![r_1=1.496* 10^(11)\ m](https://img.qammunity.org/2021/formulas/physics/middle-school/fipko8xmuegzn9at0jqem4gnqp8tkrt8a3.png)
The orbital radius of the Mercury is
![r_2=5.79 * 10^(10)\ m](https://img.qammunity.org/2021/formulas/physics/middle-school/hkkxiw0w4a8nv82q4rwes6rqarhf4p2hqf.png)
The orbital radius of the Pluto is
![r_3=5.91 * 10^(12)\ m](https://img.qammunity.org/2021/formulas/physics/middle-school/jc1yq48o87t2vgw8pj0xkxvl39h31f1yz8.png)
We need to find the time required for light to travel from the Sun to each of the three planets.
(a) For Sun -Earth,
Kepler's third law :
![T_1^2=(4\pi ^2)/(GM)r_1^3](https://img.qammunity.org/2021/formulas/physics/middle-school/grmoghir5gyqrx6zun45irpnqvvuk40bba.png)
M is mass of sun,
![M=1.989* 10^(30)\ kg](https://img.qammunity.org/2021/formulas/physics/middle-school/13onfxs5t1z9edx37zua6pjag294skcewn.png)
So,
![T_1^2=(4\pi ^2)/(6.67* 10^(-11)* 1.989* 10^(30))* 1.496* 10^(11)\\\\T_1=\sqrt{(4\pi^(2))/(6.67*10^(-11)*1.989*10^(30))*1.496*10^(11)}\\\\T_1=2* 10^(-4)\ s](https://img.qammunity.org/2021/formulas/physics/middle-school/twtqm38yiplc0razm1t4euynjdywryuk1m.png)
(b) For Sun -Mercury,
![T_2^2=(4\pi ^2)/(6.67* 10^(-11)* 1.989* 10^(30))* 5.79 * 10^(10)\ m\\\\T_2=\sqrt{(4\pi^(2))/(6.67*10^(-11)*1.989*10^(30))* 5.79 * 10^(10)}\ m\\\\T_2=1.31* 10^(-4)\ s](https://img.qammunity.org/2021/formulas/physics/middle-school/zwdv7lx3wpxbpftfjzqjrlni0d6tbrhxvm.png)
(c) For Sun-Pluto,
![T_3^2=(4\pi ^2)/(6.67* 10^(-11)* 1.989* 10^(30))* 5.91 * 10^(12)\\\\T_3=\sqrt{(4\pi^(2))/(6.67*10^(-11)*1.989*10^(30))* 5.91 * 10^(12)}\\\\T_3=1.32* 10^(-3)\ s](https://img.qammunity.org/2021/formulas/physics/middle-school/ni1cgcj9jaihgpp7vvk8bc34hog2mlur1e.png)