(10 points) A spring with a 7-kg mass and a damping constant 12 can be held stretched 1 meters beyond its natural length by a force of 4 newtons. Suppose the spring is stretched 2 meters beyond its natural length and then released with zero velocity. In the notation of the text, what is the value c2−4mk? m2kg2/sec2 Find the position of the mass, in meters, after t seconds. Your answer should be a function of the variable t of the form c1eαt+c2eβt where α= (the larger of the two) β=