46.2k views
2 votes
What is the following product? (StartRoot 14 EndRoot minus StartRoot 3 EndRoot) (StartRoot 12 EndRoot + StartRoot 7 EndRoot) 2 StartRoot 42 EndRoot + 7 StartRoot 2 EndRoot minus 6 minus StartRoot 21 EndRoot StartRoot 14 EndRoot minus 6 + StartRoot 7 EndRoot StartRoot 26 Endroot + StartRoot 21 EndRoot minus StartRoot 15 EndRoot minus StartRoot 10 EndRoot 2 StartRoot 42 EndRoot minus StartRoot 21 EndRoot

2 Answers

6 votes

Answer:

2√42 + 7√2 - 6 - √21

Explanation:

On edge 2021

User Valentin Baryshev
by
5.5k points
6 votes

Question:

What is the following product?

(√14 - √3) (√12 + √7)

Answer:

2√42 + 7√2 - 6 - √21

Explanation:

Given.

(√14 - √3) (√12 + √7)

Required

Product

(√14 - √3) (√12 + √7)

We start by opening the brackets

√14(√12 + √7) -√3(√12 + √7)

√(14*12) + √(14*7) - √(3*12) - √(3*7)

Expand individual brackets

√(2*7*2*6) + √(2*7*7) - √(3*3*4) - √(3*7)

= √(2*2*7*6) + √(2*7*7) - √(3*3*4) - √(3*7)

= √(4*42) + √(2*49) - √(9*4) - √(3*7)

Split Roots as follows

= √4 * √42 + √2 * √49 - √9 * √4 - √21

Take square root of perfect squares

= 2 * √42 + √2 * 7 - 3 * 2 - √21

= 2√42 + 7√2 - 6 - √21

Hence, the result of the product (√14 - √3) (√12 + √7) is 2√42 + 7√2 - 6 - √21

User Rahul Gaur
by
6.3k points