173k views
0 votes
Create a circle with center A and a radius of your choice. Create a point B on the circle, and find the coordinates of B. Draw the radius . What is the slope-intercept form of the equation of ? Show your work.

User Zalo
by
5.4k points

1 Answer

4 votes

Corrected Question

Create a circle with center A and a radius of your choice. Create a point B on the circle, and find the coordinates of B. Draw the radius AB. What is the slope-intercept form (y = mx + b) of the equation of AB? Show your work.

Answer:

y=0.62x+2

Explanation:

In the attached circle drawn using Geogebra

  • Center is at point A(0,2)
  • Point B on the circumference has coordinates (1.7,3.05)
  • Radius of the circle=2 Units

Gradient of AB,
m=(y_2-y_1)/(x_2-x_1) where
(x_1,y_1)=A(0,2)$ and (x_2,y_2)=B(1.7,3.05)


m=(3.05-2)/(1.7-0) \\=(1.05)/(1.7)\\\\\approx 0.62

Line AB intercepts the y-axis at y=2, therefore: b=2

The slope-intercept form of the line AB (in this case) is therefore:

y=0.62x+2

For every circle center A of radius r and point B chosen on the circumference, the equation of the line AB will be different.

You can try one of your own!!

Create a circle with center A and a radius of your choice. Create a point B on the-example-1
User Jeremy Wong
by
4.6k points