Answer:
b. A = 71.6°; C = 45.40°; b =15.0
Explanation:
The missing values can be found with the help of the Law of Cosine and properties of triangles:
Side b (Law of Cosine)
![b = \sqrt{a^(2)+c^(2)-2\cdot a \cdot c \cdot \cos B}](https://img.qammunity.org/2021/formulas/mathematics/middle-school/whqy83hfi9zysx3wllo19httbobo3wx9g7.png)
![b = \sqrt{16^(2)+12^(2)-2\cdot (16)\cdot (12) \cdot \cos 63^(\circ)}](https://img.qammunity.org/2021/formulas/mathematics/middle-school/qv6ea0aoinrzw440sofdqrzaws6cgmvqa8.png)
![b \approx 15.022](https://img.qammunity.org/2021/formulas/mathematics/middle-school/ddat6p7hdgqgw5pd9islq4ojdso1y8v4wt.png)
Angle A (Law of Cosine)
![\cos A = -(a^(2) - b^(2)-c^(2))/(2\cdot b \cdot c)](https://img.qammunity.org/2021/formulas/mathematics/middle-school/8zrcvnvhqldqjp2pa1eiwc733l37r3xyls.png)
![\cos A = - (16^(2)-15.022^(2)-12^(2))/(2\cdot (15.022)\cdot (12))](https://img.qammunity.org/2021/formulas/mathematics/middle-school/qsuaa36rd9cqh4awwyaips802s973bgita.png)
![\cos A = 0.315](https://img.qammunity.org/2021/formulas/mathematics/middle-school/ohfygz9c2yi4ff81xdufumatew2shkm7i9.png)
![A= \cos^(-1) 0.315](https://img.qammunity.org/2021/formulas/mathematics/middle-school/su7yvbgc0hzw0aa7bbvypla8zk3owwpkr7.png)
![A \approx 71.639^(\circ)](https://img.qammunity.org/2021/formulas/mathematics/middle-school/23n1ab9fwszg07klban2rg778pdw3fd0wg.png)
Angle C (Sum of internal angles in triangles)
![C = 180^(\circ) - 63^(\circ) - 71.639^(\circ)](https://img.qammunity.org/2021/formulas/mathematics/middle-school/ix6q4bqufb4js7cc3kni9gjpsrsoh8qxw2.png)
![C = 45.361^(\circ)](https://img.qammunity.org/2021/formulas/mathematics/middle-school/jwuxoziqfbzv0iebmo2ldxv4i8qymypzsm.png)
Hence, the right answer is B.