Answer:
x ≈ - 2.5; Option D
Explanation:
Let us substitute f ( x ) with 0, as to find the " real zero " of the function;
0 = x^2 - 4x + 6, ⇒ Now find one solution for x^2 - 4x + 6 = 0, using Newton - Raphson, provided it applies an iterative process to approach one root of a function, ( x( n + 1 ) = x( n ) - ( f( x( n ) ) )/( f '( x( n ) ) ) ),
d / dx * ( x^3 - 4x + 6 ), ⇒ Apply sum / difference rule ( f ± g ) ' = f ' ± g, '
d / dx * ( x^3 ) - d / dx * ( 4x ) + d / dx * ( 6 ), ⇒ Simplify,
3x^2 - 4 + 0, 3x^2 - 4, ⇒ Compute x( n + 1 ) until Δ x( n + 1 ) < 0.000001,
x ≈ - 2.52510.....
Answer; x ≈ - 2.5; Option D