104k views
0 votes
Edgy question please help

What is the true solution to the equation below?
2 in en 2x - In en 10x - In 30
x - 30
O x - 75
OX-150
X-300

Edgy question please help What is the true solution to the equation below? 2 in en-example-1
User Adonia
by
5.7k points

2 Answers

7 votes

Answer:

x=75

Explanation:

2 * ln (e ^ ln (2x)) - ln (e ^ ln (10x)) = ln (30)

Apply exponent rules

2 * ln (2x) - ln (10x) = ln (30)

Apply log rules

2 * ln (2x) - ln (10x) = ln (30)

Apply log rule: logc(ab) = logc(a) +logc (b)

Apply exponent rules

2 * ln (2x) - ln (10x) = ln (30)

Apply log rules

2 * ln (2x) - ln (10x) = ln (30)

Apply log rule: logc(ab) = logc(a) + logc (b)

ln (2x) = ln (2) + ln (2)

2(ln (2) + ln (x)) - ln (10x) = ln (30)

Apply log rule: logc(ab) = logc(a) + logc (b)

ln (10x) = ln (10) + ln (x)

ln (2x) = ln (2) + ln (2)

2(ln (2) + ln (x)) - ln (10x) = ln (30)

Apply log rule: logc(ab) = logc(a) + logc (b)

ln (10x) = ln (10) + ln (x)

Apply log rule: logc(ab) = logc(a) + logc (b)

ln (10x) = ln (10) + ln (x)

2(ln(2)+ln(x))-(ln(10)+ln(x))=]

Expand 2(ln(2) +ln(x)

ln (x) + 2 * ln (2) - ln (10) = ln (30)

Subtract 2 * ln (2) - ln (10) from both sides

In(x) + 2ln(2) - In(10) - (2ln(2) - In

Simplify

ln (x) = ln (30) - 2 * ln (2) + ln (10)

Simplifify ln (30) - 2 * ln (2) + ln 10

ln (x) = ln (75)

Apply log rule: If logb(f(x)) = logb (g(x)) then f(x) = g(x)

x = 75

Verify Solutions: X = 75

Check the solutions by plugging them

into 2 * ln (2x) - ln (10x) = ln (30) Remove the ones that don't agree with the equation.

Plug in x =75

2 * ln (2 * 75) - ln (10 * 75) = ln (30)

2 * ln (2 * 75) - ln (10 * 75) = ln (30)

ln (30) = ln (30)

True

User Earlyadopter
by
6.1k points
6 votes

Answer:

B

Explanation:

User Tulsi Kumar
by
5.9k points