Answer:
The solution to the inequality is all real values of n that respect the following condition: 2 < n < 6
Explanation:
First, we need to separate the modulus from the rest of equation. So
3-l4-nl>1
-|4-n|>1-3
-|4-n|>-2
Multiplying everything by -1.
|4-n|<2
How to solve:
|x| < a means that -a<x<a
In this question:
|4-n|<2
-2<4-n<2
This means that:
4 - n > -2
-n > -6
Multiplying by -1
n < 6
And
4 - n < 2
-n < -2
Multiplying by 1
n > 2
Intersection:
Between n > 2 and n < 6 is 2 < n < 6
So the solution to the inequality is all real values of n that respect the following condition: 2 < n < 6