116k views
3 votes
Solve (x-8)(4x+2)= 0 using the Zero Property

User Ryan Gates
by
7.8k points

2 Answers

6 votes

Answer:

Explanation:


\left(x-8\right)\left(4x+2\right)=0\\\mathrm{Using\:the\:Zero\:Factor\:Principle:\quad \:If}\:ab=0\:\mathrm{then}\:a=0\:\mathrm{or}\:b=0\:\left(\mathrm{or\:both}\:a=0\:\mathrm{and}\:b=0\right)\\\mathrm{Solve\:}\:x-8=0:\quad x=8\\x-8=0\\\mathrm{Add\:}8\mathrm{\:to\:both\:sides}\\x-8+8=0+8\\\mathrm{Simplify}\\x=8
\mathrm{Solve\:}\:4x+2=0:\quad x=-(1)/(2)\\4x+2=0\\\mathrm{Subtract\:}2\mathrm{\:from\:both\:sides}\\4x+2-2=0-2\\\mathrm{Simplify}\\4x=-2\\\mathrm{Divide\:both\:sides\:by\:}4\\(4x)/(4)=(-2)/(4)


Simplify\\(4x)/(4)=(-2)/(4)\\\mathrm{Simplify\:}(4x)/(4):\quad x\\(4x)/(4)\\\mathrm{Divide\:the\:numbers:}\:(4)/(4)=1\\=x


\mathrm{Simplify\:}(-2)/(4):\quad -(1)/(2)\\(-2)/(4)\\\mathrm{Apply\:the\:fraction\:rule}:\quad (-a)/(b)=-(a)/(b)\\=-(2)/(4)\\\mathrm{Cancel\:the\:common\:factor:}\:2\\=-(1)/(2)\\x=-(1)/(2)\\The\:solutions\:to\:the\:quadratic\:equation\:are:\\x=8,\:x=-(1)/(2)

User Marco Allori
by
8.4k points
3 votes

Answer:

x = 8 or x = -1/2

Explanation:

given:

(x-8)(4x+2)= 0

by zero property:

(x - 8) = 0

x = 8

or

(4x+2) = 0

4x = -2

x = -2/4

x = -1/2

User Carisa
by
7.6k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories