23.2k views
4 votes
PLEASE HELP I NEED THIS ASAP
Find the vertex of y=x^2-7x+4

User Azt
by
8.5k points

1 Answer

3 votes

Answer:


\mathrm{Minimum}\space\left((7)/(2),\:-(33)/(4)\right)

Explanation:


y=x^2-7x+4\\\mathrm{The\:vertex\:of\:an\:up-down\:facing\:parabola\:of\:the\:form}\:y=ax^2+bx+c\:\mathrm{is}\:x_v=-(b)/(2a)\\\mathrm{The\:parabola\:params\:are:}\\a=1,\:b=-7,\:c=4\\x_v=-(b)/(2a)\\x_v=-(\left(-7\right))/(2\cdot \:1)\\\mathrm{Simplify}\\x_v=(7)/(2)\\\mathrm{Plug\:in}\:\:x_v=(7)/(2)\:\mathrm{to\:find\:the}\:y_v\:\mathrm{value}\\y_v=\left((7)/(2)\right)^2-7\cdot (7)/(2)+4\\


\mathrm{Simplify\:}\left((7)/(2)\right)^2-7\cdot (7)/(2)+4:\quad -(33)/(4)\\y_v=-(33)/(4)\\Therefore\:the\:parabola\:vertex\:is\\\left((7)/(2),\:-(33)/(4)\right)\\\mathrm{If}\:a<0,\:\mathrm{then\:the\:vertex\:is\:a\:maximum\:value}\\\mathrm{If}\:a>0,\:\mathrm{then\:the\:vertex\:is\:a\:minimum\:value}\\a=1\\\mathrm{Minimum}\space\left((7)/(2),\:-(33)/(4)\right)

User Goldie
by
7.9k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories