Answer:
![F_T=6k(Q^2)/(L)\hat{i}+10k(Q^2)/(L)\hat{j}=2k(Q^2)/(L)[3\hat{i}+5\hat{j}]](https://img.qammunity.org/2021/formulas/physics/high-school/l61yq18cc1tjplx55iz3ufac97v9vthr0h.png)


Step-by-step explanation:
I attached an image below with the scheme of the system:
The total force on the charge 2Q is the sum of the contribution of the forces between 2Q and the other charges:
![F_T=F_Q+F_(3Q)+F_(4Q)\\\\F_T=k((Q)(2Q))/(R_1)\hat{i}+k((3Q)(2Q))/(R_2)\hat{j}+k((4Q)(2Q))/(R_3)[cos\theta \hat{i}+sin\theta \hat{j}]](https://img.qammunity.org/2021/formulas/physics/high-school/p3llzzra3tm5we1lzxtkv9vowjv50207ou.png)
the distances R1, R2 and R3, for a square arrangement is:
R1 = L
R2 = L
R3 = (√2)L
θ = 45°
![F_T=k(2Q^2)/(L)\hat{i}+k(6Q^2)/(L)\hat{j}+k(8Q^2)/(√(2)L)[cos(45\°)\hat{i}+sin(45\°)\hat{j}]\\\\F_T=k(2Q^2)/(L)\hat{i}+k(6Q^2)/(L)\hat{j}+k(8Q^2)/(√(2)L)[(√(2))/(2)\hat{i}+(√(2))/(2)\hat{j}]\\\\F_T=6k(Q^2)/(L)\hat{i}+10k(Q^2)/(L)\hat{j}=2k(Q^2)/(L)[3\hat{i}+5\hat{j}]](https://img.qammunity.org/2021/formulas/physics/high-school/obhttafrzwufd2vnvmtq77zcd5i7xiwqh1.png)
and the magnitude is:

the direction is:
