Answer:
Volume of big locker = 0.36
![m^(3)](https://img.qammunity.org/2021/formulas/physics/middle-school/a5vkxzl4vrsq35w1l5kk5h760ybrqtuw2p.png)
Volume of small locker = 0.18
![m^(3)](https://img.qammunity.org/2021/formulas/physics/middle-school/a5vkxzl4vrsq35w1l5kk5h760ybrqtuw2p.png)
Total volume = 0.54
![m^(3)](https://img.qammunity.org/2021/formulas/physics/middle-school/a5vkxzl4vrsq35w1l5kk5h760ybrqtuw2p.png)
Explanation:
We are given the following:
Width of larger locker = 0.5 m
Depth of larger locker = 0.6 m
Height of larger locker = 1.2 m
It is a cuboid like structure and it is well known that Volume of a cuboid structure =
![\text{width} * \text{depth} * \text{height}](https://img.qammunity.org/2021/formulas/mathematics/college/e94lln9q07rp27hta3ffljkd1evtxw0kxb.png)
So, volume of larger locker =
![0.5 * 0.6 * 1.2\\\Rightarrow .36m^(3)](https://img.qammunity.org/2021/formulas/mathematics/college/4it1lul4v3gk5ykog3kjrg3erm8gqukjtk.png)
Width of smaller locker = 0.5 m
Depth of smaller locker = 0.6 m
Height of smaller locker =
![(1.2)/(2) = 0.6m](https://img.qammunity.org/2021/formulas/mathematics/college/i4w954f47rgjkoa5r3vdfdb1vh40rjd236.png)
Volume of a cuboid structure =
![\text{width} * \text{depth} * \text{height}](https://img.qammunity.org/2021/formulas/mathematics/college/e94lln9q07rp27hta3ffljkd1evtxw0kxb.png)
So, volume of smaller locker =
![0.5 * 0.6 * 0.6\\\Rightarrow 0.18m^(3)](https://img.qammunity.org/2021/formulas/mathematics/college/otdrlq19fsiyd8vh16oiv5ffghy6tp8gvw.png)
Adding both the volumes, Total volume = 0.54
![m^(3)](https://img.qammunity.org/2021/formulas/physics/middle-school/a5vkxzl4vrsq35w1l5kk5h760ybrqtuw2p.png)