Answer:
6) b = 12mm
7) b = 24cm
Explanation:
6) To find b, you will subtract the square root of the square of 9mm from the square of 15mm
i.e. b =
![\sqrt{(15mm)^(2) - (9mm)^(2) }](https://img.qammunity.org/2021/formulas/mathematics/high-school/anrfl2xa0gb9u3g3qa3phspx104rmzryh1.png)
b =
![\sqrt{225mm^(2) - 81mm^(2) }](https://img.qammunity.org/2021/formulas/mathematics/high-school/k7ojdslnahfpdevv2mgl054c6bj5o7ck0i.png)
b =
![\sqrt{144mm^(2) }](https://img.qammunity.org/2021/formulas/mathematics/high-school/w2760xse1kp7d4sbs7o6cqnhinhfhh3kei.png)
b = 12mm
7) To find b, you subtract the square root of the square of 10cm from the square of 26cm
i.e. b =
![\sqrt{(26cm)^(2) - (10cm)^(2) }](https://img.qammunity.org/2021/formulas/mathematics/high-school/np4ev1btjd5g46m7lwnltb550zm2nfus8f.png)
b =
![\sqrt{676cm^(2) - 100cm^(2) }](https://img.qammunity.org/2021/formulas/mathematics/high-school/hrgt8wg24gzgv2qydps06ep0fk16vhf3ac.png)
b =
![\sqrt{576cm^(2) }](https://img.qammunity.org/2021/formulas/mathematics/high-school/ctvksi8ryg041medkamn7ylhloq31yyzad.png)
b = 24cm