22.0k views
1 vote
use the limit theorem and the properties of limits to find the horizontal asymptotes of the graph of the function f(x)= 3x^2+5 / 4x^2-6x+2​

use the limit theorem and the properties of limits to find the horizontal asymptotes-example-1
User Mmdc
by
8.3k points

1 Answer

1 vote

Answer:


y=(3)/(4)

Explanation:

Given:
f(x)=(3x^2+5)/(4x^2-6x+2)

To find: horizontal asymptotes of the graph of the function

Solution:

Line y = L is a horizontal asymptote of the function y = f(x) if either
\lim_(x\rightarrow \infty )f(x)=L\,,\,\lim_(x\rightarrow \infty^+ )f(x)=L, and L is finite


f(x)=(3x^2+5)/(4x^2-6x+2)

Use properties:


\lim_(x\rightarrow a)(f+g)=\lim_(x\rightarrow a)f+\lim_(x\rightarrow a)g\\\lim_(x\rightarrow a)\left ( (f)/(g) \right )=(\lim_(x\rightarrow a)f)/(\lim_(x\rightarrow a)g)

Divide numerator and denominator by
x^2


f(x)=((3x^2+5)/(x^2))/((4x^2-6x+2)/(x^2))\\=(3+(5)/(x^2))/(4-(6)/(x)+(2)/(x^2))\\

Therefore,


\lim_(x\rightarrow \infty^- )\left [ (3+(5)/(x^2))/(4-(6)/(x)+(2)/(x^2)) \right ]


=(\lim_(x\rightarrow \infty^- ) \left [ 3+(5)/(x^2) \right ])/(\lim_(x\rightarrow \infty^- )\left [ 4-(6)/(x)+(2)/(x^2) \right ])\\=(3+0)/(4-0+0)\\=(3)/(4)

Also,


\lim_(x\rightarrow \infty^+ )\left [ (3+(5)/(x^2))/(4-(6)/(x)+(2)/(x^2)) \right ]=(\lim_(x\rightarrow \infty^+ ) \left [ 3+(5)/(x^2) \right ])/(\lim_(x\rightarrow \infty^+ )\left [ 4-(6)/(x)+(2)/(x^2) \right ])\\=(3+0)/(4-0+0)\\=(3)/(4)

Here,
\lim_(x\rightarrow \infty^- )\left [ (3+(5)/(x^2))/(4-(6)/(x)+(2)/(x^2)) \right ]=\lim_(x\rightarrow \infty^+ )\left [ (3+(5)/(x^2))/(4-(6)/(x)+(2)/(x^2)) \right ]=(3)/(4)

So,
y=(3)/(4) is the horizontal asymptote

User Martin Berger
by
8.0k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories