Answer:
radius = 5
Explanation:
Question
![x^2+y^2-10x+8y+16=0](https://img.qammunity.org/2023/formulas/mathematics/high-school/ftctaa6ozk1ec1x34j7qczlhu7qujkqbtg.png)
The equation of a circle is shown. What is the radius?
----------------------------------------------------------------------------------
Equation of a circle
![(x-a)^2+(y-b)^2=r^2](https://img.qammunity.org/2023/formulas/mathematics/high-school/ilekd9w5v3ytefhk3unvr8rhka2u3mptc6.png)
(where (a, b) is the center and r is the radius)
Given equation:
![x^2+y^2-10x+8y+16=0](https://img.qammunity.org/2023/formulas/mathematics/high-school/ftctaa6ozk1ec1x34j7qczlhu7qujkqbtg.png)
Collect like terms:
![\implies x^2-10x+y^2+8y+16=0](https://img.qammunity.org/2023/formulas/mathematics/high-school/caqrv70n3lx403kh34e6yi2silvbmjmmzv.png)
Subtract 16 from both sides:
![\implies x^2-10x+y^2+8y=-16](https://img.qammunity.org/2023/formulas/mathematics/high-school/gvps0gp80m0flm08ond5y4lffrs8o5deqq.png)
Complete the square for both variables.
Add 25 to both sides for x. Add 16 to both sides for y.
![\implies x^2-10x+25+y^2+8y+16=-16+25+16](https://img.qammunity.org/2023/formulas/mathematics/high-school/xmncjfto70cbekufe5zpmnx3xq484enfub.png)
![\implies (x^2-10x+25)+(y^2+8y+16)=25](https://img.qammunity.org/2023/formulas/mathematics/high-school/fqmktqbh3b87laqjznfrv5k4tyirxv4rxo.png)
Factor the two variables:
![\implies (x-5)^2+(y+4)^2=25](https://img.qammunity.org/2023/formulas/mathematics/high-school/3vjoyqwl4h7vllaj3cua75mkl2w1u5tvdm.png)
Therefore:
- center of the circle = (5, -4)
- radius of the circle = √25 = 5