Answer:
Minimum Sample size 'n' = 585
Explanation:
Explanation:-
Given Estimate of the population proportion as 58% ( = 0.58)
P = 0.58
Given margin of error, E, to be 4%
M.E = 4 % = 0.04
margin of error of the population proportion is determined by
![M.E = \frac{Z_{(\alpha )/(2) }√(p(1-p)) }{√(n) }](https://img.qammunity.org/2021/formulas/mathematics/college/ua38x7ro2qu8z1ga2ikstda0s3x2jwzcjb.png)
Z- score = 1.96
![0.04 = (1.96√(0.58(1-0.58)) )/(√(n) )](https://img.qammunity.org/2021/formulas/mathematics/college/qs3lnrlk5jhmvpvryapqkbafsnj6t7p84r.png)
Cross multiplication , we get
![0.04 √(n) = 1.96 X 0.4935](https://img.qammunity.org/2021/formulas/mathematics/college/v7ie5ulmf8ibas43ke4oghm5juqfhwvb7a.png)
![√(n) = (0.4935 X 1.96)/(0.04) = 24.18](https://img.qammunity.org/2021/formulas/mathematics/college/4zf1p1jnlc7jjwcms0nfef7eqj5sqdjhzf.png)
Squaring on both sides, we get
n = 584.7≅585
Conclusion:-
minimum Sample size 'n' = 585