First year (Year 1):
Let the sales be known as "a".
Given statement:
One year, sales increased by 15%.
This can be written as:
Step-1: Evaluate the percentage
- ⇒ Year 1 = a + (a × 15%)
- ⇒ Year 1 = a + (a × 15/100)
Step-2: Multiply the terms inside the parentheses
- ⇒ Year 1 = a + (a × 15/100)
- ⇒ Year 1 = a + (15a/100)
Step-3: Open the parentheses
- ⇒ Year 1 = a + (15a/100)
- ⇒ Year 1 = 100a/100 + 15a/100
Step-4: Add the like terms;
- ⇒ Year 1 = 100a/100 + 15a/100
- ⇒ Year 1 = 115a/100
Next year (Year 2):
Given statement:
The following year sales increased by 18%.
This can be written as:
- Year 2 = Year 1 + (Year 1 × 18%)
Step-1: Substitute the amount of sales in year 1:
- ⇒ Year 2 = Year 1 + (Year 1 × 18%)
- ⇒ Year 2 = 115a/100 + (115a/100 × 18/100)
Step-2: Simplify the fractions in the parentheses:
- ⇒ Year 2 = 115a/100 + (115a/100 × 18/100)
- ⇒ Year 2 = 115a/100 + (23a/20 × 9/50)
Step-3: Multiply the fractions in the parentheses:
- ⇒ Year 2 = 115a/100 + (23a/20 × 9/50)
- ⇒ Year 2 = 1150a/1000 + (207a/1000)
Step-4: Open the parenthesis:
- ⇒ Year 2 = 1150a/1000 + (207a/1000)
- ⇒ Year 2 = 1150a/1000 + 207a/1000
Step-5: Add the fractions:
- ⇒ Year 2 = 1150a/1000 + 207a/1000
- ⇒ Year 2 = 1357a/1000
Overall percentage increase:
Formula:
Overal percentage increase = (Sales in year 2 - Original sales) × 100
Step-1: Substitute the values in the equation:
- ⇒ Overal percentage increase = (Sales in year 2 - Original sales) × 100
- ⇒ Overal percentage increase = (1357a/1000 - a) × 100
Step-2: Simplify the expression in the parentheses:
- ⇒ Overal increase = (1357a/1000 - a) × 100
- ⇒ Overal increase = (1357a/1000 - 1000a/1000) × 100
- ⇒ Overal increase = (357a/1000) × 100
Step-3: Open the parentheses and simplify:
- ⇒ Overal increase = (357a/1000) × 100
- ⇒ Overal increase = 357a/10
- ⇒ Overal increase = 35.7a
Step-4: Determine the overal increase in percentage:
- ⇒ Overal increase = 35.7a
- ⇒ Overal percentage increase = 35.7%
Therefore, the overal increase in percent is 35.7%.