27.2k views
1 vote
50 points each question. Please help. How do I solve?

50 points each question. Please help. How do I solve?-example-1
User Shillner
by
8.2k points

1 Answer

5 votes


I=\displaystyle \int (\sqrt x)/(\sqrt x -4) ~dx\\\\\text{Let,}\\\\~~~~u=\sqrt x-4\\\\\implies (du)/(dx) = \frac d{dx} \left( \sqrt x -4 \right)\\\\\implies (du)/(dx) = \frac 1{2 \sqrt x} \\\\\implies dx =2\sqrt x~ du\\\\\\I= \displaystyle \int (u+4)/(u+4 -4 ) 2(u+4) du\\\\\\~~~=2\displaystyle \int ((u+4)^2)/(u) du\\\\\\~~~=2\displaystyle \int (u^2+ 8u+16)/(u) du\\\\\\~~~=2\displaystyle \int \left(u+8+\frac{16}u\right) du\\\\\\


~~~=2\left(\displaystyle \int u ~ du + \displaystyle \int 8 ~ du + \displaystyle \int \frac{16} u ~ du\right) \\\\\\~~~=2\left( \frac {u^2}2 + 8u+16\ln |u| \right) +C\\\\\\~~~~= u^2 + 16u+ 32 \ln |u|+C\\\\\\~~~~=\left( \sqrt x -4 \right)^2 + 16\left( \sqrt x -4 \right) +32 \ln |\sqrt x -4|+C\\\\\\~~~~= x-8\sqrt x+16 +16\sqrt x -64 +32 \ln \left|\sqrt x-4 \right|+C\\\\\\\~~~~=x+8\sqrt x -48 +32\ln|\sqrt x -4| +C

User Sachin Puri
by
8.6k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories