209k views
1 vote
4 cos²x – 1=0

What is the solution?

User Mishik
by
5.4k points

1 Answer

3 votes

Answer:


$x=(\pi )/(3)+2\pi n, n\in \mathbb{Z}$


$\:x=(5\pi )/(3)+2\pi n, n \in \mathbb{Z}$


$x=(2\pi )/(3)+2\pi n, n\in \mathbb{Z}$


$\:x=(4\pi )/(3)+2\pi n, n \in \mathbb{Z}$

or


$x=(\pi)/(3)+\pi n, n \in \mathbb{Z} $


$x=(2\pi )/(3)+\pi n, n\in \mathbb{Z}$

Explanation:


4\text{cos}^2(x)-1=0\\4\text{cos}^2(x)=1\\


$cos(x)=\pm\sqrt{(1)/(4) } $


$cos(x)=\pm(1)/(2) $

So, when cos(x) is equal to


$(1)/(2) \text{ and } -(1)/(2)$ ?

For


$cos(x)=(1)/(2) $

We are talking about x = 60º and x = 300º, Quadrant I and IV, respectively. In radians:


$x=(\pi )/(3)+2\pi n, n\in \mathbb{Z}$


$\:x=(5\pi )/(3)+2\pi n, n \in \mathbb{Z}$

or


$x=(\pi)/(3)+\pi n, n \in \mathbb{Z} $

For


$cos(x)=-(1)/(2) $

We are talking about x = 120º and x = 240º, Quadrant II and III, respectively. In radians:


$x=(2\pi )/(3)+2\pi n, n\in \mathbb{Z}$


$\:x=(4\pi )/(3)+2\pi n, n \in \mathbb{Z}$

or


$x=(2\pi )/(3)+\pi n, n\in \mathbb{Z}$

User Tarec
by
5.7k points
Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.