225k views
1 vote
Use the integral test to determine if the series is convergent or divergent.

Use the integral test to determine if the series is convergent or divergent.-example-1
User Zorawar
by
5.0k points

2 Answers

7 votes

Answer:

Convergent

Explanation:

∑₁°° n / (n² + 1)²

Applying integral test:

∫₁°° x / (x² + 1)² dx

If u = x² + 1, then du = 2x dx, or ½ du = x dx.

When x = 1, u = 2. When x = ∞, u = ∞.

½ ∫₂°° 1 / u² du

½ (-1 / u) |₂°°

½ (-1 / ∞) − ½ (-1 / 2)

0 + ¼

¼

The integral converges, so the series also converges.

User Silverkid
by
5.3k points
6 votes

Answer:


\sum _(n=1)^(\infty )\:(n)/(\left(n^2+1\right)^2)converges

Explanation:

Use the integral test to determine if the series is convergent or divergent.-example-1
Use the integral test to determine if the series is convergent or divergent.-example-2
User Denim Demon
by
5.5k points