226k views
1 vote
Please check my answers! Thank you so much!

Please check my answers! Thank you so much!-example-1
Please check my answers! Thank you so much!-example-1
Please check my answers! Thank you so much!-example-2
Please check my answers! Thank you so much!-example-3
Please check my answers! Thank you so much!-example-4
Please check my answers! Thank you so much!-example-5

1 Answer

1 vote

Explanation:

1. f(x) = cos(x) → f(π/3) = ½

f'(x) = -sin(x) → f'(π/3) = -½√3

P₁(x) = f(a) + f'(a)/1! (x − a)

P₁(x) = ½ − ½√3 (x − π/3)

2. f(x) is a third order polynomial, so any third order Taylor series will equal f(x).

The remainder is the difference between f(x) and the partial sum. So R₅ = 0 and R₂ = -5x² + 4x³.

I and II only

3. eˣ = 1 + x/1! + x²/2! + x³/3! + ...

e^(0.1) = 1 + 0.1/1! + 0.1²/2! + 0.1³/3! + ...

0.1ⁿ⁺¹/(n+1)! < 0.00001

By trial and error:

0.1¹⁺¹/(1+1)! = 0.005

0.1²⁺¹/(2+1)! = 0.00017

0.1³⁺¹/(3+1)! = 0.000004

n = 3

4. f(x) = ∑ aₙ xⁿ

g(x) = ∫₀ˣ f(t) dt

g(x) = ∫₀ˣ a₀ dt + ∫₀ˣ a₁t dt + ∫₀ˣ a₂t² dt + ... + C

g(x) = a₀x + a₁x²/2 + a₂x³/3 + ... + g(0)

g(x) = 3 + ∑ aₙ xⁿ⁺¹/(n+1)

5. f(x) = √x = x^½ → f(4) = 2

f'(x) = ½ x^(-½) → f'(4) = ¼

f''(x) = -¼ x^(-³/₂) → f''(4) = -¹/₃₂

f⁽³⁾(x) = ⅜ x^(-⁵/₂) → f⁽³⁾(4) = ³/₂₅₆

f⁽⁴⁾(x) = -¹⁵/₁₆ x^(-⁷/₂) → f⁽⁴⁾(4) = -¹⁵/₂₀₄₈

P₄(x) = f(4) + f'(4) (x−4) / 1! + f''(4) (x−4)² / 2! + f⁽³⁾(4) (x−4)³ / 3! + f⁽⁴⁾(4) (x−4)⁴ / 4!

P₄(x) = 2 + ¼ (x−4) − ¹/₆₄ (x−4)² + ¹/₅₁₂ (x−4)³ − ⁵/₁₆₃₈₄ (x−4)⁴

P₄(4.2) = 2 + ¼ (0.2) − ¹/₆₄ (0.2)² + ¹/₅₁₂ (0.2)³ − ⁵/₁₆₃₈₄ (0.2)⁴

P₄(4.2) = 2.049390137

User Mike Furlender
by
8.3k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories