Answer:
-2
Explanation:
x = r cos θ
y = r sin θ
dx/dθ = -r sin θ + r' cos θ
dy/dθ = r cos θ + r' sin θ
dy/dx = (r cos θ + r' sin θ) / (-r sin θ + r' cos θ)
At θ = π/2, cos θ = 0, sin θ = 1, and r = 1. So the derivative simplifies to:
dy/dx = (r') / (-1)
dy/dx = -r'
dy/dx = -2 sin θ
dy/dx = -2