Answer:
- 128 Superscript StartFraction 3 Over x EndFraction
- (4RootIndex 3 StartRoot 2 EndRoot)x
- (4 (2 Superscript one-third Baseline) ) Superscript x
Explanation:
Given the indicinal equation
![(\sqrt[3]{128} )^(x)\\](https://img.qammunity.org/2021/formulas/mathematics/middle-school/2jj2livh59xveuzukcpcguloqri2beuh85.png)
According to one of the law of indices,
![(\sqrt[a]{m} )^(b)\\= (√(m))^(b)/(a)](https://img.qammunity.org/2021/formulas/mathematics/middle-school/l5dtbjlvgact5j4itfoxntboh425pmztjv.png)
Applying this law to the question;
![(\sqrt[3]{128} )^(x)\\ = {128} ^(x)/(3)\\ \\= (\sqrt[3]{64*2})^(x) \\ = (4\sqrt[3]{2})^(x) \\= (4(2^(1/3) )^(x) )](https://img.qammunity.org/2021/formulas/mathematics/middle-school/1se4zv9hsvex3r8pknz45fo9rkc8y7q2la.png)
The following are therefore true based on the following calculation
128 Superscript StartFraction 3 Over x EndFraction
(4RootIndex 3 StartRoot 2 EndRoot)x
(4 (2 Superscript one-third Baseline) ) Superscript x