Answer:
99% of confidence intervals for mean age of ICU patients
(53.8920 , 61.2079)
Explanation:
Explanation:-
Given sample mean
![x^(-) = 57.55](https://img.qammunity.org/2021/formulas/mathematics/college/mqznx92gjwda83ej3480tt68opf35c25n8.png)
Given standard error is determined by
S.E =
![(S.D)/(√(n) )](https://img.qammunity.org/2021/formulas/mathematics/college/3mk6xv7l7kvrluh1e42ejw07aolkb2qkx8.png)
Given data standard error = 1.42
99% of confidence intervals for mean is determined by
![(x^(-) - Z_(0.01) (S.D)/(√(n) ) , x^(-) + Z_(0.01) (S.D)/(√(n) ) )](https://img.qammunity.org/2021/formulas/mathematics/college/2gik13atu2wbekzf08muloq344ft049m73.png)
![Z_{(\alpha )/(2) } = Z_{(0.01)/(2) } = Z_(0.05) = 2.576](https://img.qammunity.org/2021/formulas/mathematics/college/ucyh237ywvr3y6s0q4ouubi9oddt3y2h6g.png)
![(x^(-) - 2.576 S.E , x^(-) + 2.576 S.E)](https://img.qammunity.org/2021/formulas/mathematics/college/jua26ojexg9z72fztemv5cn44zwy87czue.png)
![(57.55 - 2.576X 1.42 , 57.55+ 2.576 X1.42)](https://img.qammunity.org/2021/formulas/mathematics/college/fj2ph7ol92d9wad4ekevuq0qzjkpcx32cx.png)
(53.8920 , 61.2079)
Conclusion:-
99% of confidence intervals for mean is determined by
(53.8920 , 61.2079)