173k views
3 votes
If 3 tan theta =4 , prove that 5sin alpha - 3 cos alpha / 3 sin alpha + 3 cis alpha = 11/21​

1 Answer

4 votes

We have been given that
3\tan(\alpha)=4. We are asked to prove that
(5\sin(\alpha)-3\cos(\alpha))/(3\sin(\alpha)+3\cos(\alpha))=(11)/(21).

First of all, we will solve for tangent of alpha as:


\tan(\alpha)=(4)/(3)

Now, we will divide left side of our given equation by
\cos(\alpha) as:


((5\sin(\alpha))/(\cos(\alpha))-(3\cos(\alpha))/(\cos(\alpha)))/((3\sin(\alpha))/(\cos(\alpha))+(3\cos(\alpha))/(\cos(\alpha)))

We know that
(\sin(x))/(\cos(x))=\tan(x), so we will get:


(5\tan(\alpha)-3)/(3\tan(\alpha)+3)

Upon substituting
\tan(\alpha)=(4)/(3), we will get:


(5\tan(\alpha)-3)/(3\tan(\alpha)+3)=(5\cdot(4)/(3)-3)/(3\cdot(4)/(3)+3)


(5\tan(\alpha)-3)/(3\tan(\alpha)+3)=((20)/(3)-3)/((12)/(3)+3)


(5\tan(\alpha)-3)/(3\tan(\alpha)+3)=((20)/(3)-(9)/(3))/((12)/(3)+(9)/(3))


(5\tan(\alpha)-3)/(3\tan(\alpha)+3)=((20-9)/(3))/((12+9)/(3))


(5\tan(\alpha)-3)/(3\tan(\alpha)+3)=((11)/(3))/((21)/(3))


(5\tan(\alpha)-3)/(3\tan(\alpha)+3)=(11\cdot3)/(21\cdot 3)


(5\tan(\alpha)-3)/(3\tan(\alpha)+3)=(11)/(21)

Hence proved.

User Flying
by
7.9k points

Related questions

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories