161k views
5 votes
Given that sectheta = -37/12 what is the value of cottheta for pi/2 < theta< pi?

User Ehrencrona
by
4.0k points

2 Answers

5 votes

Answer:

Explanation:


sec(\theta) = (1)/(cos(\theta))


sec(\theta) = -(37)/(12)


(1)/(cos \theta) =-(37)/(12)


cos \theta =- (12)/(37)

apply the following trigonometric identity


sin \theta = √(1-cos^2\theta)\\\\sin\theta =\sqrt{1-((12)/(37))^2 }\\\\sin\theta=\pm \sqrt{(1225)/(1369) }\\\\sin\theta = (35)/(37)

Therefore ,


cot\theta =(cos\theta)/(sin\theta) =(-\\(12)/(37) )/((35)/(37) ) =-(12)/(35)

for
(\pi)/(2) <\theta<\pi

User Azheen
by
5.3k points
1 vote

Answer:


cotg(\theta) = -(12)/(35)

Explanation:

The cotangent of theta is:


cotg(\theta) = (cos(\theta))/(sin(\theta))

For pi/2 < theta< pi

This means that the angle is in the second quadrant. In the second quadrant, the cosine is negative and the sine is positive. This means that the cotangent will be negative.

Secant:


sec(\theta) = (1)/(cos(\theta))

In this question


sec(\theta) = -(37)/(12)

So


-(37)/(12) = (1)/(cos(\theta))

Using cross multiplication


-37cos(\theta) = 12


37cos(\theta) = -12


cos(\theta) = -(12)/(37)

Now we apply the following trigonometric identity:


sin(\theta)^(2) + cos(\theta)^(2) = 1


sin(\theta)^(2) + (-(12)/(37))^(2) = 1


sin(\theta)^(2) = 1 - (-(12)/(37))^(2)


sin(\theta)^(2) = 1 - (144)/(1369)


sin(\theta)^(2) = (1369 - 144)/(1369)


sin(\theta) = \pm \sqrt{(1225)/(1369)}

Since the angle is in the second quadrant, the sine is positive.


sin(\theta) = (35)/(37)

Finally, the cotangent:


cotg(\theta) = (cos(\theta))/(sin(\theta))


cotg(\theta) = (-(12)/(37))/((35)/(37))


cotg(\theta) = -(12)/(35)

User Eyup Can ARSLAN
by
4.4k points