Answer:
The general solution of
is
x = 2nπ±
![(\pi )/(6)](https://img.qammunity.org/2021/formulas/mathematics/high-school/cokjkqqbhw1lz6ir6143dqw5x4q30rqcmj.png)
The general solution values
![x = - (\pi )/(6) and x = (\pi )/(6)](https://img.qammunity.org/2021/formulas/mathematics/college/q3aunehmc0p9parh0dbzg4nc1qbgd9un93.png)
Explanation:
Explanation:-
Given equation is
![2cosx-√(3) =0 for 0<x<2\pi](https://img.qammunity.org/2021/formulas/mathematics/college/toyfuvn6ddepvipnva3m0odwrem4w58wnf.png)
![2cosx =√(3)](https://img.qammunity.org/2021/formulas/mathematics/college/5ucvu5z1wi1etpdh32lfgiu47y7bi8uyfw.png)
Dividing '2' on both sides, we get
![cos x =(√(3) )/(2)](https://img.qammunity.org/2021/formulas/mathematics/college/5sjh5ds3xi9h8wtri4hw8vk5wn8nmhxm0v.png)
![cos x = cos((\pi )/(6))](https://img.qammunity.org/2021/formulas/mathematics/college/a6vsu54evaqjoyuihbzqgmvwj5jwavwxnv.png)
General solution of cos θ = cos ∝ is θ = 2nπ±∝
Now The general solution of
is
x = 2nπ±
![(\pi )/(6)](https://img.qammunity.org/2021/formulas/mathematics/high-school/cokjkqqbhw1lz6ir6143dqw5x4q30rqcmj.png)
put n=0
![x = - (\pi )/(6) and x = (\pi )/(6)](https://img.qammunity.org/2021/formulas/mathematics/college/q3aunehmc0p9parh0dbzg4nc1qbgd9un93.png)
Put n=1
![x = 2\pi +(\pi )/(6) = (13\pi )/(6)](https://img.qammunity.org/2021/formulas/mathematics/college/f7hc8a74rjqge0mqt0ejwlb1467724804v.png)
![x = 2\pi -(\pi )/(6) = (11\pi )/(6)](https://img.qammunity.org/2021/formulas/mathematics/college/tdhw1svndthov2gbkcrn44z5v8jym2q1ep.png)
put n=2
![x = 4\pi +(\pi )/(6) = (25\pi )/(6)](https://img.qammunity.org/2021/formulas/mathematics/college/21clzdkl6o9gkjpugy9aera5k912nl9ry3.png)
![x = 4\pi -(\pi )/(6) = (23\pi )/(6)](https://img.qammunity.org/2021/formulas/mathematics/college/l3v8k0mojlusmfpnb1b296to7efpdd6f2y.png)
And so on
But given 0 < x< 2π
The general solution values
![x = - (\pi )/(6) and x = (\pi )/(6)](https://img.qammunity.org/2021/formulas/mathematics/college/q3aunehmc0p9parh0dbzg4nc1qbgd9un93.png)