Answer:
x = 2 π n_1 + π/2 for n_1 element Z
or x = π + sin^(-1)(3/2) + 2 π n_2 for n_2 element Z or x = 2 π n_3 - sin^(-1)(3/2) for n_3 element Z
Explanation:
Solve for x:
-3 + sin(x) + 2 sin^2(x) = 0
The left hand side factors into a product with two terms:
(sin(x) - 1) (2 sin(x) + 3) = 0
Split into two equations:
sin(x) - 1 = 0 or 2 sin(x) + 3 = 0
Add 1 to both sides:
sin(x) = 1 or 2 sin(x) + 3 = 0
Take the inverse sine of both sides:
x = 2 π n_1 + π/2 for n_1 element Z
or 2 sin(x) + 3 = 0
Subtract 3 from both sides:
x = 2 π n_1 + π/2 for n_1 element Z
or 2 sin(x) = -3
Divide both sides by 2:
x = 2 π n_1 + π/2 for n_1 element Z
or sin(x) = -3/2
Take the inverse sine of both sides:
Answer: x = 2 π n_1 + π/2 for n_1 element Z
or x = π + sin^(-1)(3/2) + 2 π n_2 for n_2 element Z or x = 2 π n_3 - sin^(-1)(3/2) for n_3 element Z