Answer:
![\mathbf{F(X,Y,Z) = X'Y'Z'+X'Y'Z+ X'YZ'+ XY'Z'+ XYZ'}](https://img.qammunity.org/2021/formulas/computers-and-technology/college/8pl6o1g18iwe8te8tx7ro4k5a0xy76yeio.png)
Step-by-step explanation:
Given the function F (X, Y , Z)=Σm(0,1, 2 , 4 , 6)
Σm(0,1, 2 , 4 , 6) = Min. terms and ;
πM = (3, 5, 7 ) = Max. terms
Canonical Disjunctive Normal Form is a SOP term whereby each min. term contains every single variable.
![\mathbf{0 \to X'Y'Z'} \\ \\ \mathbf{1 \to X'Y'Z} \\ \\ \mathbf{2 \to X'YZ'} \\ \\ \mathbf{4 \to XY'Z'} \\ \\ \mathbf{6 \to XYZ'}](https://img.qammunity.org/2021/formulas/computers-and-technology/college/esi5cle4cs1i09vvvy4n22ch748u1mttj8.png)
Thus;
![\mathbf{F(X,Y,Z) = X'Y'Z'+X'Y'Z+ X'YZ'+ XY'Z'+ XYZ'}](https://img.qammunity.org/2021/formulas/computers-and-technology/college/8pl6o1g18iwe8te8tx7ro4k5a0xy76yeio.png)