Hi there!
Recall Ampere's Law:
![\oint B \cdot dl = \mu_0 i_(encl)](https://img.qammunity.org/2023/formulas/physics/college/2rqpmw4mx72qjni4vu9w423koqygrtr6rw.png)
B = Magnetic Field Strength (T)
μ₀ = Permeability of Free Space (Tm/A)
i = Enclosed Current (A)
dL = differential path length
To begin, we must derive an expression for the magnetic field strength inside a wire that contains a uniformly-distributed current.
Using the expression:
![i = \int J \cdot dA](https://img.qammunity.org/2023/formulas/physics/college/o3ygwe6x8clokk962ursk1k2fvy1oqmm0t.png)
Where 'J' is the density of current, and A is the cross-sectional area:
![A = \pi r^2\\\\dA = 2\pi r dr](https://img.qammunity.org/2023/formulas/physics/college/xlpfubatut0dl3l8jl8fu5tov7flatrkab.png)
We know that:
![J = (i_0 )/(A)\\\\J = (i_0)/(\pi a^2)](https://img.qammunity.org/2023/formulas/physics/college/kmz5vi4jt9otvh75r0jpbwhsgkqjfbsh0t.png)
This is the current density. We can now integrate:
![i = \int\limits^r_0 {(i_0)/(\pi a^2) \cdot 2\pi r} \, dr\\ \\i =(i_0)/(a^2)\int\limits^r_0 {2r } \, dr\\\\i = (i_0)/(a^2) \cdot r^2 = (i_0 r^2)/(a^2)](https://img.qammunity.org/2023/formulas/physics/college/5urdbkyz3e6tp7wr9mj0oa7ocu1s5gv7g7.png)
Now, substitute this expression back into the above equation for the magnetic field:
![\oint B \cdot dl = \mu _0 (i_0r^2)/(a^2)](https://img.qammunity.org/2023/formulas/physics/college/qcvibbli6w26kh6z3is1srqht8vzo7p1pi.png)
The path of integration is a closed loop of length 2πr, so:
![B \cdot 2\pi r = \mu_0 (i_0r^2)/(a^2)\\\\B = (\mu_0 i_0r)/(2\pi a^2)](https://img.qammunity.org/2023/formulas/physics/college/hz7q4i81vqyd6ygjha8hn1lejdamefh2bj.png)
We can now use this equation for the first 2 parts.
a)
If 'r' equals 0:
![B = (\mu _0 i_0 (0))/(2\pi a^2) = \boxed{0 T}](https://img.qammunity.org/2023/formulas/physics/college/mjmg42y8kls2caud8dwjorg0kojpx7unky.png)
b)
If 'r' equals a/2:
![B = (\mu _0 i_0 ((a)/(2)))/(2\pi a^2) =B =\boxed{ (\mu _0 i_0 )/(4\pi a) T}](https://img.qammunity.org/2023/formulas/physics/college/d85dt94r7udsci0pizv9vtmtxfy72rkxo7.png)
c)
At the wire's surface, 'r' = a:
![B = (\mu _0 i_0 (a))/(2\pi a^2) =B =\boxed{ (\mu _0 i_0 )/(2\pi a) T}](https://img.qammunity.org/2023/formulas/physics/college/42wwjp6064uvlonyjfznvsv8gh7a3azmeo.png)
d)
At 'r' = 2a, since this is outside of the wire, the relationship between magnetic field and distance from the wire becomes a 1/r (inverse) relationship. This is found using Ampere's Law:
![B = (\mu_0 i_0)/(2\pi r)\\](https://img.qammunity.org/2023/formulas/physics/college/jt9o5beekka9kqhfrswsf1djyl7owevezz.png)
![B = (\mu_0 i_0)/(2\pi (2a)) \\\\\boxed{B = (\mu_0 i_0)/(4\pi a)\\}](https://img.qammunity.org/2023/formulas/physics/college/m87aqz7p49pb4z7so98xlvgzuk75wzdxl6.png)