Answer:
Proved
Explanation:
To Prove:
![tan(\alpha+\beta) =(tan(\alpha)+tan(\beta))/(1 + tan(\alpha)tan(\beta))](https://img.qammunity.org/2021/formulas/mathematics/college/anc71e2w9nakeb562ocfmma9b0mgmhwte4.png)
Proof:
Now:
![tan \theta =(sin\theta )/(cos \theta)](https://img.qammunity.org/2021/formulas/mathematics/college/rw5fyq3m8za67jtniw9647rfuwp8h93xjr.png)
Therefore:
![tan (\alpha+\beta)=( sin (\alpha+\beta))/(cos (\alpha+\beta) )](https://img.qammunity.org/2021/formulas/mathematics/college/pnc7upirhag4sl1jzhss980q3qr3tf8ma6.png)
Applying these angle sum formula
![sin (\alpha+\beta)=sin \alpha cos \alpha + sin \beta cos \beta\\cos (\alpha+\beta)=cos \alpha cos \beta - sin \alpha sin \beta](https://img.qammunity.org/2021/formulas/mathematics/college/zcrf081vtoopbjd5xzrvlgk92oz0mkv9th.png)
![tan (\alpha+\beta)=( sin \alpha cos \alpha + sin \beta cos \beta)/(cos \alpha cos \beta - sin \alpha sin \beta )](https://img.qammunity.org/2021/formulas/mathematics/college/c0bg2njpzo7glp7suocf9k73ukx48fowgp.png)
Divide all through by
![cos \alpha cos \beta](https://img.qammunity.org/2021/formulas/mathematics/college/bkx6h97nk8f37bcqqr8eirizh1neizf4nb.png)
![tan (\alpha+\beta)=( (sin \alpha cos \alpha)/(cos \alpha cos \beta) + (sin \beta cos \beta)/(cos \alpha cos \beta))/((cos \alpha cos \beta)/(cos \alpha cos \beta) - (sin \alpha sin \beta)/(cos \alpha cos \beta) )\\\\tan (\alpha+\beta)=((sin \alpha)/(cos \alpha)+(sin \beta)/(cos \beta) )/(1-tan \alpha tan \beta) \\$Therefore:\\\\tan (\alpha+\beta)=(tan \alpha+tan \beta)/(1-tan \alpha tan \beta)](https://img.qammunity.org/2021/formulas/mathematics/college/2ixtm7ryaalqi9shqyux2jze9387yvgc5o.png)
=sin \alpha cos \beta + cos \alpha sin \beta/cos \alpha cos \beta/cos \alpha cos \beta- sin \alpha sin \beta/cos \alpha cos \beta
=sin \alpha/cos \alpha + sin \beta/cos \beta/1-tan \alpha tan \beta
=tan A + tan B/1-tan A tan B