Answer:
c = 45.33, C =97°, a = 40, A = 61.15° , B = 21.85°, b = 17
Explanation:
Given that:
C = 97°, a = 40 and b = 17.
We have angle C, we need to find the side the side c opposite to the angle C. we have side a, we need to find the angle A opposite to side a. we have side b, we need to find the angle B opposite to side b.
Using cosine rule:
c² = a² + b² - 2ab × cos(C)
c² = 40² + 17² - 2(40)(17)cos(97)
c² = 2054.74
c = 45.33
Also using sine rule:
![(a)/(sin(A)) =(c)/(sin(C)) \\(40)/(sin(A))=(45.33)/(sin(97)) \\sin(A)=(sin(97))40)/(45.33)=0.876\\A=sin^(-1)(0.876)=61.15^0](https://img.qammunity.org/2021/formulas/mathematics/high-school/v1az19gfnzzzld8hbe2avikknkmy8gz71c.png)
Also:
![(b)/(sin(B)) =(c)/(sin(C)) \\(17)/(sin(B))=(45.33)/(sin(97)) \\sin(B)=(sin(97))17)/(45.33)=0.3722\\B=sin^(-1)(0.3722)=21.85^0](https://img.qammunity.org/2021/formulas/mathematics/high-school/k1de5sadpctbfk4c3xc8hc0d2xyhbjse42.png)
c = 45.33, C =97°, a = 40, A = 61.15° , B = 21.85°, b = 17