Answer:
neither
geometric progression
arithmetic progression
Explanation:
Given:
sequences:
![-1,4,-7,10,...](https://img.qammunity.org/2021/formulas/mathematics/college/6np9b9xskfw0xfd72tpmkhe6l1k2azb1kc.png)
![192,24,3,(3)/(8),...](https://img.qammunity.org/2021/formulas/mathematics/college/x9cqgy2eyjbdz4qo0qkv8nk8sd5iioqur6.png)
![-25,-18,-11,-4,...](https://img.qammunity.org/2021/formulas/mathematics/college/h7owckito5y3jepc2jmefb9ch75i9sjucj.png)
To find: which of the given sequence forms arithmetic progression, geometric progression or neither of them
Solution:
A sequence forms an arithmetic progression if difference between terms remain same.
A sequence forms a geometric progression if ratio of the consecutive terms is same.
For
:
![4-(-1)=5\\-7-4=-11\\10-(-7)=17\\So,\,\,4-(-1)\\eq -7-4\\eq 10-(-7)](https://img.qammunity.org/2021/formulas/mathematics/college/idowmtlgni855fjc66qeq5dzu4635kzivm.png)
Hence,the given sequence does not form an arithmetic progression.
![(4)/(-1)=-4\\(-7)/(4)=(-7)/(4)\\(10)/(-7)=(-10)/(7)\\So,\,\,(4)/(-1)\\eq (-7)/(4)\\eq (10)/(-7)](https://img.qammunity.org/2021/formulas/mathematics/college/ygntxmhkp4wg5quml1fnbk323kewvz5ona.png)
Hence,the given sequence does not form a geometric progression.
So,
is neither an arithmetic progression nor a geometric progression.
For
:
![(24)/(192)=(1)/(8)\\(3)/(24)=(1)/(8)\\((3)/(8))/(3)=(1)/(8)\\So,\,\,(24)/(192)=(3)/(24)=((3)/(8))/(3)](https://img.qammunity.org/2021/formulas/mathematics/college/qm3ttjb7f322lj5x9vgcb5pjjk6g8n3bak.png)
As ratio of the consecutive terms is same, the sequence forms a geometric progression.
For
:
![-18-(-25)=-18+25=7\\-11-(-18)=-11+18=7\\-4-(-11)=-4+11=7\\So,\,\,-18-(-25)=-11-(-18)=-4-(-11)](https://img.qammunity.org/2021/formulas/mathematics/college/69y3lr0vyaqw0do01km4xl4ycq9aq8cl2k.png)
As the difference between the consecutive terms is the same, the sequence forms an arithmetic progression.