225k views
2 votes
Laplace inverse
(3s+4)/(s^3-2s^2 +7s-14)



1 Answer

4 votes

Factoring the denominator gives


s^3-2s^2+7s-14=s^2(s-2)+7(s-2)=(s-2)(s^2+7)

(Keep in mind that
7=(\sqrt7)^2.)

Split up the given transform into partial fractions:


(3s+4)/((s-2)(s^2+7))=(c_1)/(s-2)+(c_2s+c_3)/(s^2+7)


3s+4=c_1(s^2+7)+(c_2s+c_3)(s-2)


3s+4=(c_1+c_2)s^2+(-2c_2+c_3)s+7c_1-2c_3


\implies\begin{cases}c_1+c_2=0\\-2c_2+c_3=3\\7c_1-2c_3=4\end{cases}\implies c_1=(10)/(11),c_2=-(10)/(11),c_3=(13)/(11)


\implies(3s+4)/((s-2)(s^2+7))=\frac1{11}\left((10)/(s-2)-(10s-13)/(s^2+7)\right)

Recalling the frequency shift property,


F(s-a)=L(e^(at)f(t))

we get


F(s-2)=(10)/(s-2)\implies f(t)=10e^(-2t)L^(-1)\left(\frac1s\right)


\implies f(t)=10e^(-2t)

The remaining inverse transforms reduce to sines and cosines:


F(s)=(10s-13)/(s^2+7)=(10s)/(s^2+7)-(13)/(\sqrt7)(\sqrt7)/(s^2+7)


\implies f(t)=10\cos(\sqrt7\,t)-(13)/(\sqrt7)\sin(\sqrt7\,t)

So we end up with


L^(-1)\left((3s+4)/((s-2)(s^2+7))\right)=\boxed{\frac1{11}\left(10e^(-2t)-10\cos(\sqrt7\,t)+(13)/(\sqrt7)\sin(\sqrt7\,t)\right)\right)}

User Anton Podolsky
by
4.7k points