95.4k views
5 votes
Laplace inverse (3s+4)/(s^2+
4s+29)​

User Ahilsend
by
6.9k points

1 Answer

3 votes

Complete the square in the denominator to reveal a sum of squares:


s^2+4s+29=(s+2)^2+25=(s+2)^2+5^2

Recall the Laplace transforms of sine and cosine,


L(\sin(at))=\frac a{s^2+a^2}


L(\cos(at))=\frac s{s^2+a^2}

as well as the frequency shift property,


L(e^(at)f(t))=F(s-a)

where
L(f(t))=F(s) is the Laplace transform of
f(t).

Rewrite the given transform as


(3s+4)/(s^2+4s+29)=(3(s+2))/((s+2)^2+5^2)-\frac25\frac5{(s+2)^2+5^2}

The inverse transforms then follows:


F(s+2)=(3(s+2))/((s+2)^2+5^2)\implies f(t)=3e^(-2t)L^(-1)\left(\frac s{s^2+5^2}\right)


\implies f(t)=3e^(-2t)\cos(5t)


F(s+2)=-\frac25\frac5{(s+2)^2+5^2}\implies f(t)=-\frac25e^(-2t)L^(-1)\left(\frac5{(s+2)^2+5^2}\right)


\implies f(t)=-\frac25e^(-2t)\sin(5t)

So we end up with (after some regrouping)


L^(-1)\left((3s+4)/(s^2+4s+29)\right)=\boxed{\frac{e^(-2t)}5(15\cos(5t)-2\sin(5t))}

User Paolo Sanchi
by
7.6k points