Answer:
![A_1 = (\pi r^2)/(2) = (\pi (20m)^2)/(2)= 200 \pi m^2](https://img.qammunity.org/2021/formulas/mathematics/college/kzbm7zkclefphjm3h47d7n6jns7oawi73u.png)
For the rectangular shape we have:
![A_2= 60 m* 40 m= 2400 m^2](https://img.qammunity.org/2021/formulas/mathematics/college/jityh4b5c47cp603t6cyiey9z8jcktkx87.png)
![A_3 = (\pi r^2)/(2) = (\pi (20m)^2)/(2)= 200 \pi m^2](https://img.qammunity.org/2021/formulas/mathematics/college/e1qgiflevaxnc8vti33s5ryodk2bdfsckn.png)
And the total area would be:
![A_T = A_1 +A_2 +A_3](https://img.qammunity.org/2021/formulas/mathematics/college/u1i27j0znj55ota8wid8li0oqlduyph887.png)
Replacing we got:
![A_T = 200 \pi +2400 +200 \pi = 2400 +400 \pi m^2= 3656.637 m^2](https://img.qammunity.org/2021/formulas/mathematics/college/udnx2hl6jlloqf1515wnk6qv6s85m2t98l.png)
Explanation:
For this case using the figure attached we can separate the total area in 3 parts.
For this case
and represent the area for a semicircle and the A2 represent the area for a rectangular figure.
We can find the individual areas like this:
![A_1 = (\pi r^2)/(2) = (\pi (20m)^2)/(2)= 200 \pi m^2](https://img.qammunity.org/2021/formulas/mathematics/college/kzbm7zkclefphjm3h47d7n6jns7oawi73u.png)
For the rectangular shape we have:
![A_2= 60 m* 40 m= 2400 m^2](https://img.qammunity.org/2021/formulas/mathematics/college/jityh4b5c47cp603t6cyiey9z8jcktkx87.png)
![A_3 = (\pi r^2)/(2) = (\pi (20m)^2)/(2)= 200 \pi m^2](https://img.qammunity.org/2021/formulas/mathematics/college/e1qgiflevaxnc8vti33s5ryodk2bdfsckn.png)
And the total area would be:
![A_T = A_1 +A_2 +A_3](https://img.qammunity.org/2021/formulas/mathematics/college/u1i27j0znj55ota8wid8li0oqlduyph887.png)
Replacing we got:
![A_T = 200 \pi +2400 +200 \pi = 2400 +400 \pi m^2= 3656.637 m^2](https://img.qammunity.org/2021/formulas/mathematics/college/udnx2hl6jlloqf1515wnk6qv6s85m2t98l.png)