![(y+1)/(y+2)+(y+8)/(y+9)=(y+2)/(y+3)+(y+7)/(y+8)](https://img.qammunity.org/2021/formulas/mathematics/college/jbkmg51qntpdup8mttvy6utzoz5568yvfj.png)
Write all fractions in terms of a common denominator:
![(y+1)/(y+2)=((y+1)(y+9)(y+3)(y+8))/((y+2)(y+9)(y+3)(y+8))](https://img.qammunity.org/2021/formulas/mathematics/college/fzjyz705jpt9bu889j7sunoj09i2y4c5zk.png)
![(y+8)/(y+9)=((y+8)^2(y+2)(y+3))/((y+2)(y+9)(y+3)(y+8))](https://img.qammunity.org/2021/formulas/mathematics/college/hbwzye7kofyo9rrgrr4fug3lpb39gmc46f.png)
![(y+2)/(y+3)=((y+2)^2(y+9)(y+8))/((y+2)(y+9)(y+3)(y+8))](https://img.qammunity.org/2021/formulas/mathematics/college/bvru0bog80qtm6f7x7qjw5f5x0vp497cza.png)
![(y+7)/(y+8)=((y+7)(y+2)(y+9)(y+3))/((y+2)(y+9)(y+3)(y+8))](https://img.qammunity.org/2021/formulas/mathematics/college/ncu4nhpco861hqfixmo5izjnrl2nmkhjzg.png)
Then move all fractions to one side and simplify the numerator:
![((y+1)(y+9)(y+3)(y+8)+(y+8)^2(y+2)(y+3)-(y+2)^2(y+9)(y+8)-(y+7)(y+2)(y+9)(y+3))/((y+2)(y+9)(y+3)(y+8))=0]()
The numerator dictates when the fraction reduces to 0. The denominator can never be 0, so we know that y cannot take any of the values -2, -9, -3, nor -8.
So the equation reduces to
![(y+1)(y+9)(y+3)(y+8)+(y+8)^2(y+2)(y+3)-(y+2)^2(y+9)(y+8)-(y+7)(y+2)(y+9)(y+3)=0](https://img.qammunity.org/2021/formulas/mathematics/college/1ckwnf5oe9i8p2gq1qqqqj8dv801pv6zo8.png)
Expand the left side; you would end up with
![-6(2y+11)=0](https://img.qammunity.org/2021/formulas/mathematics/college/16q946k2gedante3wa0z8fjsgnkjrw9uli.png)
![2y+11=0](https://img.qammunity.org/2021/formulas/mathematics/college/xuxbnqymy26i0d734nkf3kufgme042fux8.png)
![2y=-11](https://img.qammunity.org/2021/formulas/mathematics/college/5ipna3rnwpa1sz3im5m8h0m8q4r00l5vie.png)
![\implies\boxed{y=-\frac{11}2}](https://img.qammunity.org/2021/formulas/mathematics/college/heqzfdo3a1fhw32m1nc9ma5avobs1p1zdr.png)