Answer:
The standard form equation is
.
The center is
and the radius is
.
Explanation:
The standard form of an equation of a circle is
where
is the center and the radius is
.
To write the equation
in the form of the standard circle equation you must:
![\mathrm{Move\:the\:five\:to\:the\:right\:side} \\\\x^2+8x+y^2+4y=5\\\\\mathrm{Group\:x-variables\:and\:y-variables\:together}\\\\\left(x^2+8x\right)+\left(y^2+4y\right)=5\\\\\mathrm{Convert}\:x\:\mathrm{to\:square\:form}\\\\\left(x^2+8x+16\right)+\left(y^2+4y\right)=5+16\\\left(x+4\right)^2+\left(y^2+4y\right)=5+16\\\\\mathrm{Convert}\:y\:\mathrm{to\:square\:form}\\\\\left(x+4\right)^2+\left(y^2+4y+4\right)=5+16+4\\\left(x+4\right)^2+\left(y+2\right)^2=5+16+4\\](https://img.qammunity.org/2021/formulas/mathematics/college/setgaj86o2lxhk4xhh3bg55z6jq95lv9db.png)
![\left(x+4\right)^2+\left(y+2\right)^2=25\\\\\mathrm{Rewrite\:in\:standard\:form}\\\\\left(x-\left(-4\right)\right)^2+\left(y-\left(-2\right)\right)^2=5^2\\\\\mathrm{Therefore\:the\:circle\:properties\:are:}\\\\\left(h,\:k\right)=\left(-4,\:-2\right),\:r=5](https://img.qammunity.org/2021/formulas/mathematics/college/kajuvj5f9be4dff86yqo4nh6etxwrv47d1.png)