Answer:
![\boxed{\sf x < -3\quad \mathrm{or}\quad \:x > -1}](https://img.qammunity.org/2023/formulas/mathematics/high-school/tog27s1rzxrq3mj4zlsrrfbh2mq3jz6h4w.png)
Explanation:
![\sf x^2+4x+3 > \:0](https://img.qammunity.org/2023/formulas/mathematics/high-school/yuj4y8ahae0r4mv0apnlkm8c90b1ukiv7t.png)
In order to solve inequality, we need to factor the left hand side. we can use the transformation
to factor quadratic polynomials. where x(1) & x(2) are the solutions of the quadratic equation ax²+bx+c=0 .
![\sf x^2+4x+3=0](https://img.qammunity.org/2023/formulas/mathematics/high-school/wlfkvvocki54fiaibgsnczdy6ivvgq5msf.png)
Quadratic formula:-
![\boxed{\sf x_(1,\:2)=(-b\pm √(b^2-4ac))/(2a)}](https://img.qammunity.org/2023/formulas/mathematics/high-school/nolxuapu8lkkpf0x25zdqc4qh2wzffwz6t.png)
![\sf a=1\\b=4\\c=3](https://img.qammunity.org/2023/formulas/mathematics/high-school/4v58mmv7mxaqnooneanxqvl7l2xxxoypv9.png)
← Calculate
![\sf √(4^2-4* \:1* \:3)=\boxed{2}](https://img.qammunity.org/2023/formulas/mathematics/high-school/h8081zm1fuf1s12a7hlf4akjg8ngvriod5.png)
![\sf \cfrac{-4\pm \:2}{2* \:1}](https://img.qammunity.org/2023/formulas/mathematics/high-school/c4hyo9u8ytetbpxhsttypfkvei4klyqqn1.png)
Now, let's Separate the solutions,
![\sf x_1=\cfrac{-4+2}{2* \:1},\:x_2=\cfrac{-4-2}{2* \:1}](https://img.qammunity.org/2023/formulas/mathematics/high-school/4vhetptn36nkae4nob2jsb0ui213gq2cqf.png)
Do the calculations,
![\sf x_1=\cfrac{-4+2}{2* \:1}=\boxed{-1}](https://img.qammunity.org/2023/formulas/mathematics/high-school/r6hr4d0dqh790719mc6z5yneh52wprk4c6.png)
![\sf x_2=\cfrac{-4-2}{2* \:1}=\boxed{-3}](https://img.qammunity.org/2023/formulas/mathematics/high-school/70vp6yvl4ujze6napmp5yxgqhqe76ub6ad.png)