Answer:
E = 8991.8 N/C
Step-by-step explanation:
To find the electric flux in the sphere you use the Gaussian formula:
![\int \vec{E}d\vec{A}=(Q)/(\epsilon_o)](https://img.qammunity.org/2021/formulas/physics/college/ai2zrpe2iylq8tqrr3yy212jc18exzg5xq.png)
but, electric field is given by
![E=(Q)/(4\pi \epsilon_o r^2)](https://img.qammunity.org/2021/formulas/physics/college/jd3zsadd9uq0vcptyd8khy5tqwe4tfy8fd.png)
in each point of the sphere surface, electric field is parallel to the normal vector of the surface:
![E\int d \vec{A}=E(4\pi r^2)\\\\E(4\pi r^2)=(Q)/(\epsilon_o)\\\\E=(Q)/(4\pi \epsilon_o r^2)\\\\](https://img.qammunity.org/2021/formulas/physics/college/poj1yjxzz0cvc4ogft0x4yw3pe9lcpedxq.png)
Then, for r = 1.00 m you have:
![E=(1*10^(-6)C)/(4\pi (1.00m)^2(8.85*10^(-12)C^2/Nm^2))=8991.8(N)/(C)](https://img.qammunity.org/2021/formulas/physics/college/g0l0txxtde9xnqd7ux46if46bxw1aefkbf.png)
where you have used that εo = 8.85*10^-12 C^2/Nm^2